VIN 5-21V input to the board
CIPO/COPI have previously been referred to as MISO/MOSI
MAXIMUM input current per pin is 5mA
MAXIMUM output current per pin is 15mA
MAXIMUM current overall is 25mA for the sum of all GPIOs and VDDs

Legend:
- Power
- Power Input
- Power Output
- Ground
- GPIO Digital External
- Analog External
- Main Part
- Secondary Part
- Internal Component
- Other Pins (Reset, System Control, Debugging)
- I2C
- Default
- SPI
- Default
- UART/USART
- Default
- Other SERIAL Communication
- Analog
- Default
- PWM/Timer
- LED
- RGB LED
- Short Circuit allowed functions

MAXIMUM output current per pin is 15mA
MAXIMUM input current per pin is 5mA
MAXIMUM current overall is 25mA for the sum of all GPIOs and VDDs
VIN 5-21V input to the board
CIPO/COPI have previously been referred to as MISO/MOSI

SKU code: ABX00069
Full Pinout - Page 1 of 4
Last update: 22 Dec, 2022
WARNING!

Advanced Section

The following information is for advanced use only and may not be officially supported by Arduino software.
VIN 5-21V input to the board
CIPO/COPI have previously been referred to as MISO/MOSI
MAXIMUM input current per pin is 5mA
MAXIMUM output current per pin is 15mA
MAXIMUM current overall is 25mA for the sum of all GPIOs and VDDs
This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/ or send a letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

SKU code: ABX00069
Full Pinout - Page 4 of 4

Last update: 22 Dec, 2022

VIN 5-21V input to the board
CIPO/COPI have previously been referred to as MISO/MOSI

MAXIMUM input current per pin is 5mA
MAXIMUM output current per pin is 15mA
MAXIMUM current overall is 25mA for the sum of all GPIOs and VDDs

Making a short circuit using the solder jumper allows only the function in the Short Circuit Pin cells and also it changes the Pad connection of the pins D7 and D8 in P0.09 and P0.10.

Making a short circuit with this solder jumper, the identical one on the bottom or both (they are in parallel), connects the VBUS to the pin +5V.

Cutting the solder jumper allows to power via battery or from an external 3.3V power source connecting the battery’s ground to the GND pin and the battery’s positive to the 3.3V pin.

Making a short circuit using the solder jumper allows only the function in the Short Circuit Pin cells and also it changes the Pad connection of the pins D7 and D8 in P0.09 and P0.10.

Cutting the solder jumper allows to power via battery or from an external 3.3V power source connecting the battery’s ground to the GND pin and the battery’s positive to the 3.3V pin.

Making a short circuit with this solder jumper, the identical one on the bottom or both (they are in parallel), connects the VBUS to the pin +5V.

Cutting the solder jumper allows to power via battery or from an external 3.3V power source connecting the battery’s ground to the GND pin and the battery’s positive to the 3.3V pin.

Making a short circuit with this solder jumper, the identical one on the bottom or both (they are in parallel), connects the VBUS to the pin +5V.

Cutting the solder jumper allows to power via battery or from an external 3.3V power source connecting the battery’s ground to the GND pin and the battery’s positive to the 3.3V pin.