CIPO/COPI have previously been referred to as MISO/MOSI.

MAXIMUM LP20s are driven by bidirectional translators powered by VDDIO_EXT. These translators are meant for low power and can only drive very limited current. Please check translator datasheet for details.

VDDIO_EXT is software programmable between 1.8 and 3.3V.

CPO/COP1 have previously been referred to as MISO/MOSI.

WARNING: Do NOT connect two batteries at the same time.
CIPO/COPI have previously been referred to as MISO/MOSI.

MAXIMUM LP20s are driven by bidirectional translators powered by VDDIO_EXT. These translators are meant for low power and can only drive very limited current. Please check translator datasheet for details.

VDDIO_EXT is software programmable between 1.8 and 3.3V.

CIPO/COPI have previously been referred to as MISO/MOSI.
CIPO/COPI have previously been referred to as MISO/MOSI.

MAXIMUM LPIOs are driven by bidirectional translators powered by VDDIO_EXT. These translators are meant for low power and can only drive very limited current. Please check translator datasheet for details.

VDDIO_EXT is software programmable between 1.8 and 3.3V.

CPIO/COPI have previously been referred to as MISO/MOSI.

Legend:
- Power
- Power Input
- Power Output
- Ground
- GPIO Digital External
- Analog External
- Main Part
- Secondary Part
- Internal Component
- Other Pins (Reset, System Control, Debugging)
- LED
- RGB LED
- Other Pins (Reset, System Control, Debugging)
CIPO/COPI have previously been referred to as MISO/MOSI. MAXIMUM LPIOs are driven by bidirectional translators powered by VDDIO_EXT. These translators are meant for low power and can only drive very limited current. Please check translator datasheet for details.

VDDIO_EXT is software programmable between 1.8 and 3.3V.
WARNING!

Advanced Section

The following information is for advanced use only and may not be officially supported by Arduino software.
CIPO/COPI have previously been referred to as MISO/MOSI.

MAXIMUM LPIOs are driven by bidirectional translators powered by VDDIO_EXT. These translators are meant for low power and can only drive very limited current. Please check translator datasheet for details.

VDDIO_EXT is software programmable between 1.8 and 3.3V.

- **POWER**: Power Input, Power Output, Ground
- **GPIO**: Digital External, Analog External
- **Main Part**
- **Secondary Part**
- **Internal Component**
- **Other Pins** (Reset, System Control, Debugging)
- **LED**
- **RGB LED**
- **Other**

Disabling the LS/LDO pin it is possible to power the Nicla Sense ME using VDDIO_EXT pin on the header.

If LS/LDO pin is enabled, it is possible to configure the Nicla Sense ME to work at +3V3 or +1V8, depending on the configuration of the maximum input voltage.

MAXIMUM LP20s are driven by bidirectional translators powered by VDDIO_EXT. These translators are meant for low power and can only drive very limited current. Please check translator datasheet for details.

VDDIO_EXT is software programmable between 1.8 and 3.3V.

CIPO/COPI have previously been referred to as MISO/MOSI.
CIPO/COPI have previously been referred to as MISO/MOSI. MAXIMUM LPIOs are driven by bidirectional translators powered by VDDIO_EXT. These translators are meant for low power and can only drive very limited current. Please check translator datasheet for details. VDDIO_EXT is software programmable between 1.8 and 3.3V.
The MAXIMUM LPIOs are driven by bidirectional translators powered by VDDIO_EXT. These translators are meant for low power and can only drive very limited current. Please check translator datasheet for details.

VDDIO_EXT is software programmable between 1.8 and 3.3V.

CIPO/COPI have previously been referred to as MISO/MOSI.

Legend:

- **Power**
- **Power Input**
- **Power Output**
- **Ground**
- GPIO Digital External
- Analog External
- Main Part
- Secondary Part
- Internal Component
- Other Pins (Reset, System Control, Debugging)
- LED
- RGB LED
- Other

Note:

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/ or send a letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.